الإرغوسفير

من ويكيبيديا، الموسوعة الحرة

هذه نسخة قديمة من هذه الصفحة، وقام بتعديلها Aws Al-mimari (نقاش | مساهمات) في 13:17، 25 يونيو 2019 (اضافة المقالة). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة، وقد تختلف اختلافًا كبيرًا عن النسخة الحالية.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
صورة تبين منطقة الارغوسفير (باللون الخافت) ومنطقتي افق الحدث الداخلية (الغامقة) والخارجية الملامسة للارغوسفير عند قطبي الثقب الاسود.
صورة تبين منطقة الارغوسفير (باللون الخافت) ومنطقتي افق الحدث الداخلية (الغامقة) والخارجية الملامسة للارغوسفير عند قطبي الثقب الاسود.

الإرغوسفير هو اسم يطلق على منطقة تتشكل حول أفق حدث ثقب اسود دوار، أطلق الاسم من قبل ريمو روفيني [الإنجليزية] و جون أرتشيبالد ويلر خلال محاضرات ألقيت في ليز أوش [الإنجليزية] عام 1971، واشتق الاسم من الكلمة الاغريقية "ἔργον (ارغيون) والتي تعني شغل"، ويقصد به الامكانية النظرية لاستخراج المادة والطاقة من هذه المنطقة.

صفات الإرغوسفير

تأخذ الإرغوسفير شكل ثمرة اليقطين حيث أنها تلامس منطقة أفق الحدث عند قطبي الثقب الاسود، وتبتعد عنها تدريجياً وتصل اقصى مسافة بينهما عند دائرة استوائه.

تعتمد المسافة بين الإرغوسفير وأفق الحدث على مقدار جاذبية الثقب الاسود و زخمه الدوراني،[1] وبما أن الثقب يدور حول محور دوران يمر من قطبيه فلا يوجد حركة دورانية عند القطبين لهذا لا تتكون الإرغوسفير هناك بينما يملك إستواء الثقب أعظم مقدار دوران لهذا تكون المسافة عنده أكبر ما يمكن، نصف قطرها عند أقصى بعد لها عن أفق الحدث (نصف قطرها الاستوائي) ينطبق مع قيمة نصف قطر شفارزتشيلد لهذا الثقب الاسود في حالة عدم الدوران، بينما يقترب نصف قطرها العمودي او (القطبي) من نصف من قيمته عند الاستواء.[2]

تشكلها

صورة متحركة لتشكل الارغوسفير عند دوران الثقب الاسود.
تتكون الارغوسفير بالاعتماد على دوران ثقب الاسود، قيمة الثابت (a) تمثل النسبة بين الزخم الزاوي الدوراني للثقب الاسود الى كتلته، وتأخذ قيمة صفر للثقوب السوداء عديمة الدوران، وقيمة واحد للثقوب التي تملك أقصى زخم دوراني بالنسبة لكتلتها.

عندما يدور الثقب الاسود حول محوره، تسبب جاذبيته الكبيرة برم الزمكان حوله بما يعرف بتأثير سحب الاطار المرجعي او آلية لينز-ثيرينج،[3] وبسبب هذه الظاهرة فإن اي جسم داخل هذه المنطقة لايمكن بأي حال أن يرى من قبل راصد خارجي على مسافة بعيدة بحالة سكون او ثبات لأن ذلك يعني أن الجسم يجب أن يتحرك بسرعة تفوق سرعة الضوء وهذا غير ممكن حسب النظرية النسبية الخاصة وتنخفض قيمة هذه السرعة كلما إبتعد الجسم عن أفق حدث الثقب[4] حتى تساوي قيمة سرعة الضوء عند منطقة تسمى ارغوسرفيس "سطح الشغل" ويسمى المجال خارجها بحدود السكون وذلك لأن خطوط العالم تتغير من الشكل الزمني خارجها إلى الشكل الفضائي داخلها[5] مع أن تأثير سحب الفضاء خارجها لا يزال موجوداً لكن بمقدار أقل، وهنا نرى أن ما يحدد سطح الإرغوسفير هي سرعة الضوء.

خصائصها

توضح الصورة دخول جسيم اختباري الى منطقة الارغوسفير، نتيجة تأثير سحب الاطار المرجعي فإن أي جسم مهما كان اتجاهه الاصلي سيدور حول الثقب الاسود بنفس اتجاه دوران الثقب الاسود حول نفسه، وتبين الصورة الانزياح الاحمرار اللانهائي في طيف الجسيم عند دخوله الى الاغوسفير.

ولأن الإرغوسفير تقع خارج أفق حدث الثقب الاسود إذاً فلايزال من الممكن نظرياً للأجسام ألهروب من نطاق جاذبية الثقب دون السقوط فيه حيث تعمل جاذبيته الدوارة على زيادة سرعة الجسم بشكل كبير جداً مما يعطيه دفع يمكنه من الهرب بعيداً وهذا يعني أن الثقب الاسود يفقد جزء من طاقة دورانه على شكل سرعة للجسم الواقع ضمن الإرغوسفير وأقترحت هذه الظاهرة من قبل العالم روجر بنروز عام 1969 وسميت بآلية بنروز،[6] حيث تقترح هذه الآلية بأنه أي جسم منفرد داخل الإرغوسفير من الممكن أن يكتسب طاقه من دوران الثقب الاسود أقصى قيمة لها تكون مساوية لـ 20.7% من تكافؤ الكتلة والطاقة للجسم،[7] وإذا تكررت العملية لنفس الكتلة فإن مقدار أقصى زيادة سيكون 29% من تكافؤ الكتلة والطاقة الاصلي[8] وهذا يعني تباطؤ الزخم الدوراني للثقب الاسود في كل مرة يكتسب فيها الجسم طاقة، ولهذا سيقترب الثقب الاسود تدريجياً من ثقب شفارزتشيلد الأسود عديم الدوران حيث لا تتكون الإرغوسفير أصلاً، أعطت آلية بنروز تفسيرات ممكنة لاحدى أقوى وأعنف الظواهر الكونية المعروفة بإسم انفجارات أشعة غاما،[9] والنمذجة الحاسوبية لها أظهرت امكانية تكوين جسيمات ذات طاقة عالية في منطقة الإرغوسفير والتي رصدت منبعثة من الكوازارات وأنوية المجرات النشطة.[10]

بسبب شدة تأثير سحب الإطار المرجعي فإن أي جسم يقع في الإرغوسفير سيدور حول الثقب الاسود بمدار يوافق إتجاه دوران الثقب الاسود حول نفسه، مهما كانت سرعته الابتدائية أو إتجاه دخوله الى المنطقة.

ومن خصائها الاخرى أن اي راصد يقع خارج الإرغوسفير على مسافة كبيرة يرى أن أي جسم يسقط فيها سيعاني من إنزياح أحمر لانهائي في طيفه.




إقرأ أيضاً


المراجع

  1. ^ Visser، Matt (1 ديسمبر 1997). "Acoustic black holes: horizons, ergospheres, and Hawking radiation". Classical and Quantum Gravity. ج. 15: 1767–1791. arXiv:gr-qc/9712010. Bibcode:1998CQGra..15.1767V. DOI:10.1088/0264-9381/15/6/024.
  2. ^ Griest، Kim (26 فبراير 2010). "Physics 161: Black Holes: Lecture 22" (PDF). مؤرشف من الأصل (PDF) في 2012-04-03. اطلع عليه بتاريخ 2011-10-19. {{استشهاد ويب}}: الوسيط غير المعروف |deadurl= تم تجاهله (مساعدة)
  3. ^ Darling، David. "Lense-Thiring Effect". مؤرشف من الأصل في 2009-08-11. {{استشهاد ويب}}: الوسيط غير المعروف |dead-url= تم تجاهله (مساعدة)
  4. ^ Misner 1973, p. 879.
  5. ^ Misner 1973, p. 879.
  6. ^ Bhat، Manjiri؛ Dhurandhar، Sanjeev؛ Dadhich، Naresh (10 يناير 1985). "Energetics of the Kerr–Newman Black Hole by the Penrose Process" (PDF). Journal of Astrophysics and Astronomy. ج. 6 ع. 2: 85–100. Bibcode:1985JApA....6...85B. DOI:10.1007/BF02715080.
  7. ^ Chandrasekhar, p. 369.
  8. ^ Carroll, p. 271.
  9. ^ Nagataki، Shigehiro (28 يونيو 2011). "Rotating BHs as Central Engines of Long GRBs: Faster is Better". Publications of the Astronomical Society of Japan. ج. 63: 1243–1249. arXiv:1010.4964. Bibcode:2011PASJ...63.1243N. DOI:10.1093/pasj/63.6.1243.
  10. ^ Kafatos، Menas؛ Leiter، D. (1979). "Penrose pair production as a power source of quasars and active galactic nuclei". The Astrophysical Journal. ج. 229: 46–52. Bibcode:1979ApJ...229...46K. CiteSeerX:10.1.1.924.9607. DOI:10.1086/156928.